174 research outputs found

    Image restoration using HOS and the Radon transform

    Get PDF
    The authors propose the use of higher-order statistics (HOS) to study the problem of image restoration. They consider images degraded by linear or zero phase blurring point spread functions (PSF) and additive Gaussian noise. The complexity associated with the combination of two-dimensional signal processing and higher-order statistics is reduced by means of the Radon transform. The projection at each angle is an one-dimensional signal that can be processed by any existing 1-D higher-order statistics-based method. They apply two methods that have proven to attain good one-dimensional signal reconstruction, especially in the presence of noise. After the ideal projections have been estimated, the inverse Radon transform gives the restored image. Simulation results are provided.Peer ReviewedPostprint (published version

    A new positive time-frequency distribution

    Get PDF
    This article studies the formulation of new members of the Cohen-Posch (1985) class of positive time-frequency energy distributions. Members of this class are always positive functionals and satisfy the marginal constraints. Therefore, they can be properly interpreted as distributions. We considered the minimization of cross-entropy measures with respect to different priors orPeer ReviewedPostprint (published version

    Blind Inversion of Wiener Systems

    Get PDF
    A system in which a linear dynamic part is followed by a non linear memoryless distortion a Wiener system is blindly inverted This kind of systems can be modelised as a postnonlinear mixture and using some results about these mixtures an e cient algorithm is proposed Results in a hard situation are presented and illustrate the e ciency of this algorith

    Can Classical Noise Enhance Quantum Transmission?

    Get PDF
    A modified quantum teleportation protocol broadens the scope of the classical forbidden-interval theorems for stochastic resonance. The fidelity measures performance of quantum communication. The sender encodes the two classical bits for quantum teleportation as weak bipolar subthreshold signals and sends them over a noisy classical channel. Two forbidden-interval theorems provide a necessary and sufficient condition for the occurrence of the nonmonotone stochastic resonance effect in the fidelity of quantum teleportation. The condition is that the noise mean must fall outside a forbidden interval related to the detection threshold and signal value. An optimal amount of classical noise benefits quantum communication when the sender transmits weak signals, the receiver detects with a high threshold, and the noise mean lies outside the forbidden interval. Theorems and simulations demonstrate that both finite-variance and infinite-variance noise benefit the fidelity of quantum teleportation.Comment: 11 pages, 3 figures, replaced with published version that includes new section on imperfect entanglement and references to J. J. Ting's earlier wor

    New Evidence of Discrete Scale Invariance in the Energy Dissipation of Three-Dimensional Turbulence: Correlation Approach and Direct Spectral Detection

    Full text link
    We extend the analysis of [Zhou and Sornette, Physica D 165, 94-125, 2002] showing statistically significant log-periodic corrections to scaling in the moments of the energy dissipation rate in experiments at high Reynolds number (≈2500\approx 2500) of three-dimensional fully developed turbulence. First, we develop a simple variant of the canonical averaging method using a rephasing scheme between different samples based on pairwise correlations that confirms Zhou and Sornette's previous results. The second analysis uses a simpler local spectral approach and then performs averages over many local spectra. This yields stronger evidence of the existence of underlying log-periodic undulations, with the detection of more than 20 harmonics of a fundamental logarithmic frequency f=1.434±0.007f = 1.434 \pm 0.007 corresponding to the preferred scaling ratio γ=2.008±0.006\gamma = 2.008 \pm 0.006.Comment: 9 RevTex4 papes including 8 eps figure

    Quantum Forbidden-Interval Theorems for Stochastic Resonance

    Get PDF
    We extend the classical forbidden-interval theorems for a stochastic-resonance noise benefit in a nonlinear system to a quantum-optical communication model and a continuous-variable quantum key distribution model. Each quantum forbidden-interval theorem gives a necessary and sufficient condition that determines whether stochastic resonance occurs in quantum communication of classical messages. The quantum theorems apply to any quantum noise source that has finite variance or that comes from the family of infinite-variance alpha-stable probability densities. Simulations show the noise benefits for the basic quantum communication model and the continuous-variable quantum key distribution model.Comment: 13 pages, 2 figure

    Emotion classification in Parkinson's disease by higher-order spectra and power spectrum features using EEG signals: A comparative study

    Get PDF
    Deficits in the ability to process emotions characterize several neuropsychiatric disorders and are traits of Parkinson's disease (PD), and there is need for a method of quantifying emotion, which is currently performed by clinical diagnosis. Electroencephalogram (EEG) signals, being an activity of central nervous system (CNS), can reflect the underlying true emotional state of a person. This study applied machine-learning algorithms to categorize EEG emotional states in PD patients that would classify six basic emotions (happiness and sadness, fear, anger, surprise and disgust) in comparison with healthy controls (HC). Emotional EEG data were recorded from 20 PD patients and 20 healthy age-, education level- and sex-matched controls using multimodal (audio-visual) stimuli. The use of nonlinear features motivated by the higher-order spectra (HOS) has been reported to be a promising approach to classify the emotional states. In this work, we made the comparative study of the performance of k-nearest neighbor (kNN) and support vector machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Analysis of variance (ANOVA) showed that power spectrum and HOS based features were statistically significant among the six emotional states (p < 0.0001). Classification results shows that using the selected HOS based features instead of power spectrum based features provided comparatively better accuracy for all the six classes with an overall accuracy of 70.10% ± 2.83% and 77.29% ± 1.73% for PD patients and HC in beta (13-30 Hz) band using SVM classifier. Besides, PD patients achieved less accuracy in the processing of negative emotions (sadness, fear, anger and disgust) than in processing of positive emotions (happiness, surprise) compared with HC. These results demonstrate the effectiveness of applying machine learning techniques to the classification of emotional states in PD patients in a user independent manner using EEG signals. The accuracy of the system can be improved by investigating the other HOS based features. This study might lead to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders
    • …
    corecore